H Infinity robustification control of existing piezoelectric-stack actuated nanomanipulators
نویسندگان
چکیده
In current AFM-based nanomanipulation systems, the commercial position closed-loop controller for piezoelectric nanopositioning stages are implemented with success in a wide range of industrial applications. Even if these controllers operate with satisfactory nominal tracking performance, considerable attention has been focused on appropriate control strategies to compensate hysteresis, nonlinearities, drift and creep for high bandwidths and large scanning regimes. As these closedloop controllers are very cost-effective, a special interest in robust plug-in compensators seems to be a solution. We proposed in this paper a robust plug-in compensator using the H-infinity loop-shaping techniques which can be plugged into the existing controller without affecting the already satisfactory nominal tracking performance of the existing closed-loop system. Dynamic modeling, identification and robust control of a 3 d.o.f. piezoelectric nanorobotic positioner are presented in this paper in order to improve the nanorobot performance under plant parameter variations and in the presence of external disturbances. Simulation and experimental results are given to validate the proposed plug-in robust compensator in the case of a nanorobotic manipulation task.
منابع مشابه
H∞ Robustification Control of Existing Piezoelectric-Stack Actuated Nanomanipulators
In current AFM-based nanomanipulation systems, the commercial position closed-loop controller for piezoelectric nanopositioning stages are implemented with success in a wide range of industrial applications. Even if these controllers operate with satisfactory nominal tracking performance, considerable attention has been focused on appropriate control strategies to compensate hysteresis, nonline...
متن کاملDahl Model-Based Hysteresis Compensation and Precise Positioning Control of an XY Parallel Micromanipulator With Piezoelectric Actuation
This paper presents a new control scheme for the hysteresis compensation and precise positioning of a piezoelectrically actuated micromanipulator. The scheme employs an inverse Dahl model-based feedforward in combination with a repetitive proportionalintegral-derivative feedback control algorithm along with an antiwindup strategy. The dynamic model of the system with Dahl hysteresis is establis...
متن کاملActive Fault Tolerant Control for Ultrasonic Piezoelectric Motor
Ultrasonic piezoelectric motor technology is an important system component in integrated mechatronics devices working on extreme operating conditions. Due to these constraints, robustness and performance of the control interfaces should be taken into account in the motor design. In this paper, we apply a new architecture for a fault tolerant control using Youla parameterization for an ultrasoni...
متن کاملWafer-scale fabrication of self-actuated piezoelectric nanoelectromechanical resonators based on lead zirconate titanate (PZT)
In this paper we report an unprecedented level of integration of self-actuated nanoelectromechanical system (NEMS) resonators based on a 150 nm thick lead zirconate titanate (PZT) thin film at the wafer-scale. A top-down approach combining ultraviolet (UV) lithography with other standard planar processing technologies allows us to achieve high-throughput manufacturing. Multilayer stack cantilev...
متن کاملApplication of Piezoelectric and Functionally Graded Materials in Designing Electrostatically Actuated Micro Switches
In this research, a functionally graded microbeam bonded with piezoelectric layers is analyzed under electric force. Static and dynamic instability due to the electric actuation is studied because of its importance in micro electro mechanical systems, especially in micro switches. In order to prevent pull-in instability, two piezoelectric layers are used as sensor and actuator. A current amplif...
متن کامل